Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The intrinsic Toeplitz structure and its applications in algebraic Riccati equations (2111.13003v3)

Published 25 Nov 2021 in math.NA and cs.NA

Abstract: In this paper we derive a Toeplitz-structured closed form of the unique positive semi-definite stabilizing solution for the discrete-time algebraic Riccati equations, especially for the case that the state matrix is not stable. Based on the found form and fast Fourier transform, we propose a new algorithm for solving both discrete-time and continuous-time large-scale algebraic Riccati equations with low-rank structure. It works without unnecessary assumptions, complicated shift selection strategies, or matrix calculations of the cubic order with respect to the problem scale. Numerical examples are given to illustrate its features. Besides, we show that it is theoretically equivalent to several algorithms existing in the literature in the sense that they all produce the same sequence under the same parameter setting.

Citations (3)

Summary

We haven't generated a summary for this paper yet.