Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An efficient iteration for the extremal solutions of discrete-time algebraic Riccati equations (2111.08923v1)

Published 17 Nov 2021 in math.OC, cs.NA, and math.NA

Abstract: Algebraic Riccati equations (AREs) have been extensively applicable in linear optimal control problems and many efficient numerical methods were developed. The most attention of numerical solutions is the (almost) stabilizing solution in the past works. Nevertheless, it is an interesting and challenging issue in finding the extremal solutions of AREs which play a vital role in the applications. In this paper, based on the semigroup property, an accelerated fixed-point iteration (AFPI) is developed for solving the extremal solutions of the discrete-time algebraic Riccati equation. In addition, we prove that the convergence of the AFPI is at least R-suplinear with order $r>1$ under some mild assumptions. Numerical examples are shown to illustrate the feasibility and efficiency of the proposed algorithm.

Citations (1)

Summary

We haven't generated a summary for this paper yet.