Using $LDL^{T}$ factorizations in Newton's method for solving general large-scale algebraic Riccati equations (2402.06844v2)
Abstract: Continuous-time algebraic Riccati equations can be found in many disciplines in different forms. In the case of small-scale dense coefficient matrices, stabilizing solutions can be computed to all possible formulations of the Riccati equation. This is not the case when it comes to large-scale sparse coefficient matrices. In this paper, we provide a reformulation of the Newton-Kleinman iteration scheme for continuous-time algebraic Riccati equations using indefinite symmetric low-rank factorizations. This allows the application of the method to the case of general large-scale sparse coefficient matrices. We provide convergence results for several prominent realizations of the equation and show in numerical examples the effectiveness of the approach.
- A multishift algorithm for the numerical solution of algebraic Riccati equations. Electron. Trans. Numer. Anal., 1:33–48, 1993. URL: https://etna.math.kent.edu/volumes/1993-2000/vol1/abstract.php?vol=1&pages=33-48.
- Optimal Control: Linear Quadratic Methods. Prentice-Hall, Englewood Cliffs, NJ, 1990.
- B. D. O. Anderson and B. Vongpanitlerd. Network Analysis and Synthesis: A Modern Systems Approach. Networks Series. Prentice-Hall, Englewood Cliffs, NJ, 1972.
- W. F. Arnold. Numerical solution of algebraic matrix Riccati equations. Tech.-Report ADA139929, Naval Weapons Center, China Lake, CA, 1984. Public reprint of Ph.D. dissertation. URL: https://apps.dtic.mil/sti/citations/ADA139929.
- Generalized eigenproblem algorithms and software for algebraic Riccati equations. Proc. IEEE, 72(12):1746–1754, 1984. doi:10.1109/PROC.1984.13083.
- Riccati-based boundary feedback stabilization of incompressible Navier-Stokes flows. SIAM J. Sci. Comput., 37(2):A832–A858, 2015. doi:10.1137/140980016.
- T. Başar and J. Moon. Riccati equations in Nash and Stackelberg differential and dynamic games. IFAC-Pap., 50(1):9547–9554, 2017. 20th IFAC World Congress. doi:10.1016/j.ifacol.2017.08.1625.
- P. Benner. Contributions to the Numerical Solution of Algebraic Riccati Equations and Related Eigenvalue Problems. PhD thesis, Logos-Verlag, Berlin, 1997.
- P. Benner. Numerical solution of special algebraic Riccati equations via an exact line search method. In 1997 European Control Conference (ECC), pages 3136–3141, 1997. doi:10.23919/ECC.1997.7082591.
- P. Benner and Z. Bujanović. On the solution of large-scale algebraic Riccati equations by using low-dimensional invariant subspaces. Linear Algebra Appl., 488:430–459, 2016. doi:10.1016/j.laa.2015.09.027.
- RADI: a low-rank ADI-type algorithm for large scale algebraic Riccati equations. Numer. Math., 138(2):301–330, 2018. doi:10.1007/s00211-017-0907-5.
- A numerical comparison of different solvers for large-scale, continuous-time algebraic Riccati equations and LQR problems. SIAM J. Sci. Comput., 42(2):A957–A996, 2020. doi:10.1137/18M1220960.
- P. Benner and R. Byers. An exact line search method for solving generalized continuous-time algebraic Riccati equations. IEEE Trans. Autom. Control, 43(1):101–107, 1998. doi:10.1109/9.654908.
- A factored variant of the Newton iteration for the solution of algebraic Riccati equations via the matrix sign function. Numer. Algorithms, 66(2):363–377, 2014. doi:10.1007/s11075-013-9739-2.
- Robust output-feedback stabilization for incompressible flows using low-dimensional ℋ∞subscriptℋ\mathcal{H}_{\infty}caligraphic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT-controllers. Comput. Optim. Appl., 82(1):225–249, 2022. doi:10.1007/s10589-022-00359-x.
- A low-rank solution method for Riccati equations with indefinite quadratic terms. Numer. Algorithms, 92(2):1083–1103, 2023. doi:10.1007/s11075-022-01331-w.
- An inexact low-rank Newton-ADI method for large-scale algebraic Riccati equations. Appl. Numer. Math., 108:125–142, 2016. doi:10.1016/j.apnum.2016.05.006.
- Matrix equations, sparse solvers: M-M.E.S.S.-2.0.1—Philosophy, features and application for (parametric) model order reduction. In P. Benner, T. Breiten, H. Faßbender, M. Hinze, T. Stykel, and R. Zimmermann, editors, Model Reduction of Complex Dynamical Systems, volume 171 of International Series of Numerical Mathematics, pages 369–392. Birkhäuser, Cham, 2021. doi:10.1007/978-3-030-72983-7_18.
- Efficient handling of complex shift parameters in the low-rank Cholesky factor ADI method. Numer. Algorithms, 62(2):225–251, 2013. doi:10.1007/s11075-012-9569-7.
- Self-generating and efficient shift parameters in ADI methods for large Lyapunov and Sylvester equations. Electron. Trans. Numer. Anal., 43:142–162, 2014. URL: https://etna.mcs.kent.edu/volumes/2011-2020/vol43/abstract.php?vol=43&pages=142-162.
- Numerical solution of large-scale Lyapunov equations, Riccati equations, and linear-quadratic optimal control problems. Numer. Lin. Alg. Appl., 15(9):755–777, 2008. doi:10.1002/nla.622.
- P. Benner and J. Saak. Linear-quadratic regulator design for optimal cooling of steel profiles. Technical Report SFB393/05-05, Sonderforschungsbereich 393 Parallele Numerische Simulation für Physik und Kontinuumsmechanik, TU Chemnitz, Chemnitz, Germany, 2005. URL: http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601597.
- P. Benner and J. Saak. Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey. GAMM-Mitt., 36(1):32–52, 2013. doi:10.1002/gamm.201310003.
- MORLAB – Model Order Reduction LABoratory (version 6.0), September 2023. See also: https://www.mpi-magdeburg.mpg.de/projects/morlab. doi:10.5281/zenodo.7072831.
- P. Benner and T. Stykel. Numerical solution of projected algebraic Riccati equations. SIAM J. Numer. Anal., 52(2):581–600, 2014. doi:10.1137/130923993.
- P. Benner and T. Stykel. Model order reduction for differential-algebraic equations: A survey. In A. Ilchmann and T. Reis, editors, Surveys in Differential-Algebraic Equations IV, Differential-Algebraic Equations Forum, pages 107–160. Springer, Cham, 2017. doi:10.1007/978-3-319-46618-7_3.
- P. Benner and S. W. R. Werner. MORLAB—The Model Order Reduction LABoratory. In P. Benner, T. Breiten, H. Faßbender, M. Hinze, T. Stykel, and R. Zimmermann, editors, Model Reduction of Complex Dynamical Systems, volume 171 of International Series of Numerical Mathematics, pages 393–415. Birkhäuser, Cham, 2021. doi:10.1007/978-3-030-72983-7_19.
- C. Bertram and H. Faßbender. On a family of low-rank algorithms for large-scale algebraic Riccati equations. e-print 2304.01624, arXiv, 2023. Numerical Analysis (math.NA). doi:10.48550/arXiv.2304.01624.
- A structure-preserving doubling algorithm for continuous-time algebraic Riccati equations. Linear Algebra Appl., 396:55–80, 2005. doi:10.1016/j.laa.2004.10.010.
- M. C. Delfour. Linear quadratic differential games: Saddle point and Riccati differential equation. SIAM J. Control Optim., 46(2):750–774, 2007. doi:10.1137/050639089.
- U. B. Desai and D. Pal. A realization approach to stochastic model reduction and balanced stochastic realizations. In 21st IEEE Conference on Decision and Control, pages 1105–1112, 1982. doi:10.1109/CDC.1982.268322.
- Inexact Kleinman-Newton method for Riccati equations. SIAM J. Matrix Anal. Appl., 31(2):272–288, 2009. doi:10.1137/070700978.
- Gramian-based reduction method applied to large sparse power system descriptor models. IEEE Trans. Power Syst., 23(3):1258–1270, 2008. doi:10.1109/TPWRS.2008.926693.
- Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, fourth edition, 2013.
- M. Heyouni and K. Jbilou. An extended block Arnoldi algorithm for large-scale solutions of the continuous-time algebraic Riccati equation. Electron. Trans. Numer. Anal., 33:53–62, 2009. URL: https://etna.math.kent.edu/volumes/2001-2010/vol33/abstract.php?vol=33&pages=53-62.
- A new set of invariants for linear systems–application to reduced order compensator design. IEEE Trans. Autom. Control, 28(10):953–964, 1983. doi:10.1109/TAC.1983.1103159.
- M. Kimura. Doubling algorithm for continuous-time algebraic Riccati equation. Int. J. Syst. Sci., 20(2):191–202, 1989. doi:10.1080/00207728908910119.
- D. L. Kleinman. On an iterative technique for Riccati equation computations. IEEE Trans. Autom. Control, 13(1):114–115, 1968. doi:10.1109/TAC.1968.1098829.
- P. Kürschner. Efficient Low-Rank Solution of Large-Scale Matrix Equations. Dissertation, Otto-von-Guericke-Universität, Magdeburg, Germany, 2016. URL: http://hdl.handle.net/11858/00-001M-0000-0029-CE18-2.
- P. Lancaster and L. Rodman. Algebraic Riccati Equations. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995.
- An LDLT𝐿𝐷superscript𝐿𝑇LDL^{T}italic_L italic_D italic_L start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT factorization based ADI algorithm for solving large-scale differential matrix equations. Proc. Appl. Math. Mech., 14(1):827–828, 2014. doi:10.1002/pamm.201410394.
- Computing the positive stabilizing solution to algebraic Riccati equations with an indefinite quadratic term via a recursive method. IEEE Trans. Autom. Control, 53(10):2280–2291, 2008. doi:10.1109/TAC.2008.2006108.
- A. J. Laub. A Schur method for solving algebraic Riccati equations. IEEE Trans. Autom. Control, 24(6):913–921, 1979. doi:10.1109/TAC.1979.1102178.
- F. Leibfritz. COMPleib𝐶𝑂𝑀𝑃subscript𝑙𝑒𝑖𝑏COMPl_{e}ibitalic_C italic_O italic_M italic_P italic_l start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT italic_i italic_b: COnstrained Matrix-optimization Problem library – a collection of test examples for nonlinear semidefinite programs, control system design and related problems. Tech.-report, University of Trier, 2004. URL: http://www.friedemann-leibfritz.de/COMPlib_Data/COMPlib_Main_Paper.pdf.
- J.-R. Li and J. White. Low rank solution of Lyapunov equations. SIAM J. Matrix Anal. Appl., 24(1):260–280, 2002. doi:10.1137/S0895479801384937.
- Y. Lin and V. Simoncini. A new subspace iteration method for the algebraic Riccati equation. Numer. Linear Algebra Appl., 22(1):26–47, 2015. doi:10.1002/nla.1936.
- A. Locatelli. Optimal Control: An Introduction. Birkhäuser, Basel, 2001.
- Green M. A relative error bound for balanced stochastic truncation. IEEE Trans. Autom. Control, 33(10):961–965, 1988. doi:10.1109/9.7255.
- V. Mehrmann and T. Stykel. Balanced truncation model reduction for large-scale systems in descriptor form. In P. Benner, V. Mehrmann, and D. C. Sorensen, editors, Dimension Reduction of Large-Scale Systems, volume 45 of Lect. Notes Comput. Sci. Eng., pages 83–115. Springer, Berlin, Heidelberg, 2005. doi:10.1007/3-540-27909-1_3.
- D. Mustafa and K. Glover. Controller reduction by ℋ∞subscriptℋ\mathcal{H}_{\infty}caligraphic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT-balanced truncation. IEEE Trans. Autom. Control, 36(6):668–682, 1991. doi:10.1109/9.86941.
- Oberwolfach Benchmark Collection. Steel profile. hosted at MORwiki – Model Order Reduction Wiki, 2005. URL: https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Steel_Profile.
- A contraction mapping preserving balanced reduction scheme and its infinity norm error bounds. IEEE Trans. Circuits Syst., 35(2):184–189, 1988. doi:10.1109/31.1720.
- J. D. Roberts. Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Internat. J. Control, 32(4):677–687, 1980. Reprint of Technical Report No. TR-13, CUED/B-Control, Cambridge University, Engineering Department, 1971. doi:10.1080/00207178008922881.
- J. Saak and M. Behr. Reimplementation of optimal cooling process for a steel profile of a rail, 2020. URL: https://gitlab.mpi-magdeburg.mpg.de/models/fenicsrail.
- J. Saak and M. Behr. The Oberwolfach steel-profile benchmark revisited, July 2021. doi:10.5281/zenodo.5113560.
- M-M.E.S.S. – The Matrix Equations Sparse Solvers library (version 3.0), August 2023. See also: https://www.mpi-magdeburg.mpg.de/projects/mess. doi:10.5281/zenodo.7701424.
- J. Saak and M. Voigt. Model reduction of constrained mechanical systems in M-M.E.S.S. IFAC-Pap., 51(2):661–666, 2018. 9th Vienna International Conference on Mathematical Modelling MATHMOD 2018. doi:10.1016/j.ifacol.2018.03.112.
- J. Saak and S. W. R. Werner. Code, data and results for numerical experiments in “Using LDLT𝐿𝐷superscript𝐿𝑇LDL^{T}italic_L italic_D italic_L start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT factorizations in Newton’s method for solving general large-scale algebraic Riccati equations” (version 1.0), February 2024. doi:10.5281/zenodo.10619037.
- N. Sandell. On Newton’s method for Riccati equation solution. IEEE Trans. Autom. Control, 19(3):254–255, 1974. doi:10.1109/TAC.1974.1100536.
- V. Simoncini. Analysis of the rational Krylov subspace projection method for large-scale algebraic Riccati equations. SIAM J. Matrix Anal. Appl., 37(4):1655–1674, 2016. doi:10.1137/16M1059382.
- E. D. Sontag. Mathematical Control Theory, volume 6 of Texts in Applied Mathematics. Springer, New York, second edition, 1998. doi:10.1007/978-1-4612-0577-7.
- T. Stillfjord. Singular value decay of operator-valued differential Lyapunov and Riccati equations. SIAM J. Control Optim., 56(5):3598–3618, 2018. doi:10.1137/18M1178815.
- T. Stykel. Low-rank iterative methods for projected generalized Lyapunov equations. Electron. Trans. Numer. Anal., 30:187–202, 2008. URL: https://etna.math.kent.edu/volumes/2001-2010/vol30/abstract.php?vol=30&pages=187-202.
- N. Truhar and K. Veselić. An efficient method for estimating the optimal dampers’ viscosity for linear vibrating systems using Lyapunov equation. SIAM J. Matrix Anal. Appl., 31(1):18–39, 2009. doi:10.1137/070683052.
- A. Varga. On computing high accuracy solutions of a class of Riccati equations. Control–Theory and Advanced Technology, 10(4):2005–2016, 1995.
- H. K. Weichelt. Numerical Aspects of Flow Stabilization by Riccati Feedback. Dissertation, Otto-von-Guericke-Universität, Magdeburg, Germany, 2016. doi:10.25673/4493.