Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Binned multinomial logistic regression for integrative cell type annotation (2111.12149v1)

Published 23 Nov 2021 in stat.AP

Abstract: Categorizing individual cells into one of many known cell type categories, also known as cell type annotation, is a critical step in the analysis of single-cell genomics data. The current process of annotation is time-intensive and subjective, which has led to different studies describing cell types with labels of varying degrees of resolution. While supervised learning approaches have provided automated solutions to annotation, there remains a significant challenge in fitting a unified model for multiple datasets with inconsistent labels. In this article, we propose a new multinomial logistic regression estimator which can be used to model cell type probabilities by integrating multiple datasets with labels of varying resolution. To compute our estimator, we solve a nonconvex optimization problem using a blockwise proximal gradient descent algorithm. We show through simulation studies that our approach estimates cell type probabilities more accurately than competitors in a wide variety of scenarios. We apply our method to ten single-cell RNA-seq datasets and demonstrate its utility in predicting fine resolution cell type labels on unlabeled data as well as refining cell type labels on data with existing coarse resolution annotations. An R package implementing the method is available at https://github.com/keshav-motwani/IBMR and the collection of datasets we analyze is available at https://github.com/keshav-motwani/AnnotatedPBMC.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.