Armada: A Robust Latency-Sensitive Edge Cloud in Heterogeneous Edge-Dense Environments (2111.12002v1)
Abstract: Edge computing has enabled a large set of emerging edge applications by exploiting data proximity and offloading latency-sensitive and computation-intensive workloads to nearby edge servers. However, supporting edge application users at scale in wide-area environments poses challenges due to limited point-of-presence edge sites and constrained elasticity. In this paper, we introduce Armada: a densely-distributed edge cloud infrastructure that explores the use of dedicated and volunteer resources to serve geo-distributed users in heterogeneous environments. We describe the lightweight Armada architecture and optimization techniques including performance-aware edge selection, auto-scaling and load balancing on the edge, fault tolerance, and in-situ data access. We evaluate Armada in both real-world volunteer environments and emulated platforms to show how common edge applications, namely real-time object detection and face recognition, can be easily deployed on Armada serving distributed users at scale with low latency.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.