2000 character limit reached
Bayesian Learning via Neural Schrödinger-Föllmer Flows (2111.10510v9)
Published 20 Nov 2021 in stat.ML and cs.LG
Abstract: In this work we explore a new framework for approximate Bayesian inference in large datasets based on stochastic control (i.e. Schr\"odinger bridges). We advocate stochastic control as a finite time and low variance alternative to popular steady-state methods such as stochastic gradient Langevin dynamics (SGLD). Furthermore, we discuss and adapt the existing theoretical guarantees of this framework and establish connections to already existing VI routines in SDE-based models.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.