Papers
Topics
Authors
Recent
2000 character limit reached

Adaptive State-Space Multitaper Spectral Estimation (2111.10490v2)

Published 20 Nov 2021 in stat.AP and stat.ME

Abstract: Short-time Fourier transform (STFT) is the most common window-based approach for analyzing the spectrotemporal dynamics of time series. To mitigate the effects of high variance on the spectral estimates due to finite-length, independent STFT windows, state-space multitaper (SSMT) method used a state-space framework to introduce dependency among the spectral estimates. However, the assumed time-invariance of the state-space parameters makes the spectral dynamics difficult to capture when the time series is highly nonstationary. We propose an adaptive SSMT (ASSMT) method as a time-varying extension of SSMT. ASSMT tracks highly nonstationary dynamics by adaptively updating the state parameters and Kalman gains using a heuristic, computationally efficient exponential smoothing technique. In analyses of simulated data and real human electroencephalogram (EEG) recordings, ASSMT showed improved denoising and smoothing properties relative to standard multitaper and SSMT approaches.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.