Extension of the value function reformulation to multiobjective bilevel optimization (2111.07522v2)
Abstract: We consider a multiobjective bilevel optimization problem with vector-valued upper- and lower-level objective functions. Such problems have attracted a lot of interest in recent years. However, so far, scalarization has appeared to be the main approach used to deal with the lower-level problem. Here, we utilize the concept of frontier map that extends the notion of optimal value function to our parametric multiobjective lower-level problem. Based on this, we build a tractable constraint qualification that we use to derive necessary optimality conditions for the problem. Subsequently, we show that our resulting necessary optimality conditions represent a natural extension from standard optimistic bilevel programs with scalar objective functions.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.