Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fracture Detection in Wrist X-ray Images Using Deep Learning-Based Object Detection Models (2111.07355v3)

Published 14 Nov 2021 in eess.IV, cs.CV, cs.LG, and physics.med-ph

Abstract: Hospitals, especially their emergency services, receive a high number of wrist fracture cases. For correct diagnosis and proper treatment of these, images obtained from various medical equipment must be viewed by physicians, along with the patients medical records and physical examination. The aim of this study is to perform fracture detection by use of deep learning on wrist Xray images to support physicians in the diagnosis of these fractures, particularly in the emergency services. Using SABL, RegNet, RetinaNet, PAA, Libra R_CNN, FSAF, Faster R_CNN, Dynamic R_CNN and DCN deep learning based object detection models with various backbones, 20 different fracture detection procedures were performed on Gazi University Hospitals dataset of wrist Xray images. To further improve these procedures, five different ensemble models were developed and then used to reform an ensemble model to develop a unique detection model, wrist fracture detection_combo (WFD_C). From 26 different models for fracture detection, the highest detection result obtained was 0.8639 average precision (AP50) in the WFD-C model. Huawei Turkey R&D Center supports this study within the scope of the ongoing cooperation project coded 071813 between Gazi University, Huawei and Medskor. Code is available at https://github.com/fatihuysal88/wrist-d

Citations (65)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com