Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fracture Detection in Pediatric Wrist Trauma X-ray Images Using YOLOv8 Algorithm (2304.05071v5)

Published 11 Apr 2023 in cs.CV

Abstract: Hospital emergency departments frequently receive lots of bone fracture cases, with pediatric wrist trauma fracture accounting for the majority of them. Before pediatric surgeons perform surgery, they need to ask patients how the fracture occurred and analyze the fracture situation by interpreting X-ray images. The interpretation of X-ray images often requires a combination of techniques from radiologists and surgeons, which requires time-consuming specialized training. With the rise of deep learning in the field of computer vision, network models applying for fracture detection has become an important research topic. In this paper, we use data augmentation to improve the model performance of YOLOv8 algorithm (the latest version of You Only Look Once) on a pediatric wrist trauma X-ray dataset (GRAZPEDWRI-DX), which is a public dataset. The experimental results show that our model has reached the state-of-the-art (SOTA) mean average precision (mAP 50). Specifically, mAP 50 of our model is 0.638, which is significantly higher than the 0.634 and 0.636 of the improved YOLOv7 and original YOLOv8 models. To enable surgeons to use our model for fracture detection on pediatric wrist trauma X-ray images, we have designed the application "Fracture Detection Using YOLOv8 App" to assist surgeons in diagnosing fractures, reducing the probability of error analysis, and providing more useful information for surgery.

Citations (94)

Summary

We haven't generated a summary for this paper yet.