Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pediatric Wrist Fracture Detection in X-rays via YOLOv10 Algorithm and Dual Label Assignment System (2407.15689v2)

Published 22 Jul 2024 in eess.IV and cs.CV

Abstract: Wrist fractures are highly prevalent among children and can significantly impact their daily activities, such as attending school, participating in sports, and performing basic self-care tasks. If not treated properly, these fractures can result in chronic pain, reduced wrist functionality, and other long-term complications. Recently, advancements in object detection have shown promise in enhancing fracture detection, with systems achieving accuracy comparable to, or even surpassing, that of human radiologists. The YOLO series, in particular, has demonstrated notable success in this domain. This study is the first to provide a thorough evaluation of various YOLOv10 variants to assess their performance in detecting pediatric wrist fractures using the GRAZPEDWRI-DX dataset. It investigates how changes in model complexity, scaling the architecture, and implementing a dual-label assignment strategy can enhance detection performance. Experimental results indicate that our trained model achieved mean average precision (mAP@50-95) of 51.9\% surpassing the current YOLOv9 benchmark of 43.3\% on this dataset. This represents an improvement of 8.6\%. The implementation code is publicly available at https://github.com/ammarlodhi255/YOLOv10-Fracture-Detection

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. Evidently Cochrane, “Wrist fractures in children: How are they best treated?” 2022. [Online]. Available: https://www.evidentlycochrane.net/wrist-fractures-children/
  2. M. John Erickson, “Wrist fractures in children,” 2024. [Online]. Available: https://www.johnericksonmd.com/patient-information/pediatric-distal-radius-fractures/
  3. scottishriteforchildren, “Wrist fractures and other wrist complaints you shouldnt ignore,” 2024. [Online]. Available: https://scottishriteforchildren.org/news-items/wrist-fractures-and-other-wrist-complaints-you-sho
  4. Gleamer, “Artificial intelligence effectivity in fracture detection,” 2024. [Online]. Available: https://www.gleamer.ai/evidence/artificial-intelligence-effectivity-in-fracture-detection
  5. A. Hussain, A. Fareed, and S. Taseen, “Bone fracture detection—can artificial intelligence replace doctors in orthopedic radiography analysis?” Frontiers in Artificial Intelligence, vol. 6, 2023.
  6. A. Ahmed, A. S. Imran, A. Manaf, Z. Kastrati, and S. M. Daudpota, “Enhancing wrist abnormality detection with yolo: Analysis of state-of-the-art single-stage detection models,” Biomedical Signal Processing and Control, vol. 93, p. 106144, 2024.
  7. C.-T. Chien, R.-Y. Ju, K.-Y. Chou, E. Xieerke, and J.-S. Chiang, “Yolov8-am: Yolov8 with attention mechanisms for pediatric wrist fracture detection,” 2024.
  8. R.-Y. Ju and W. Cai, “Fracture detection in pediatric wrist trauma x-ray images using yolov8 algorithm,” Scientific Reports, vol. 13, no. 1, p. 20077, 2023.
  9. E. Nagy, M. Janisch, F. Hržić, E. Sorantin, and S. Tschauner, “A pediatric wrist trauma x-ray dataset (grazpedwri-dx) for machine learning,” Scientific Data, vol. 9, no. 1, p. 222, 2022.
  10. C.-T. Chien, R.-Y. Ju, K.-Y. Chou, and J.-S. Chiang, “Yolov9 for fracture detection in pediatric wrist trauma x-ray images,” arXiv, May 2024.
  11. P. Samothai, P. Sanguansat, A. Kheaksong, K. Srisomboon, and W. Lee, “The evaluation of bone fracture detection of yolo series,” in 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC).   IEEE, 2022, pp. 1054–1057.
  12. A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han, and G. Ding, “Yolov10: Real-time end-to-end object detection,” 2024.
  13. G. Sha, J. Wu, and B. Yu, “Detection of spinal fracture lesions based on improved yolov2,” in 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), 2020, pp. 235–238.
  14. F. Hrži’c et al., “Fracture recognition in paediatric wrist radiographs: An object detection approach,” Mathematics, vol. 10, no. 16, p. 2939, 2022.
  15. R. Dibo, A. Galichin, P. Astashev, D. V. Dylov, and O. Y. Rogov, “Deeploc: Deep learning-based bone pathology localization and classification in wrist x-ray images,” in Analysis of Images, Social Networks and Texts, D. I. Ignatov, M. Khachay, A. Kutuzov, H. Madoyan, I. Makarov, I. Nikishina, and A. Panchenko, Eds.   Cham: Springer Nature Switzerland, 2024, pp. 199–211.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com