Papers
Topics
Authors
Recent
2000 character limit reached

HydraGAN A Multi-head, Multi-objective Approach to Synthetic Data Generation (2111.07015v1)

Published 13 Nov 2021 in cs.LG

Abstract: Synthetic data generation overcomes limitations of real-world machine learning. Traditional methods are valuable for augmenting costly datasets but only optimize one criterion: realism. In this paper, we tackle the problem of generating synthetic data that optimize multiple criteria. This goal is necessary when real data are replaced by synthetic for privacy preservation. We introduce HydraGAN, a new approach to synthetic data generation that introduces multiple generator and discriminator agents into the system. The multi-agent GAN optimizes the goal of privacy-preservation as well as data realism. To facilitate multi-agent training, we adapt game-theoretic principles to offer equilibrium guarantees. We observe that HydraGAN outperforms baseline methods for three datasets for multiple criteria of maximizing data realism, maximizing model accuracy, and minimizing re-identification risk.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.