Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Quasifibrations of Graphs to Find Symmetries in Biological Networks (2111.06999v1)

Published 13 Nov 2021 in q-bio.QM, cs.IT, math.IT, math.OC, physics.bio-ph, and physics.data-an

Abstract: A fibration of graphs is an homomorphism that is a local isomorphism of in-neighbourhoods, much in the same way a covering projection is a local isomorphism of neighbourhoods. Recently, it has been shown that graph fibrations are useful tools to uncover symmetries and synchronization patterns in biological networks ranging from gene, protein,and metabolic networks to the brain. However, the inherent incompleteness and disordered nature of biological data precludes the application of the definition of fibration as it is; as a consequence, also the currently known algorithms to identify fibrations fail in these domains. In this paper, we introduce and develop systematically the theory of quasifibrations which attempts to capture more realistic patterns of almost-synchronization of units in biological networks. We provide an algorithmic solution to the problem of finding quasifibrations in networks where the existence of missing links and variability across samples preclude the identification of perfect symmetries in the connectivity structure. We test the algorithm against other strategies to repair missing links in incomplete networks using real connectome data and synthetic networks. Quasifibrations can be applied to reconstruct any incomplete network structure characterized by underlying symmetries and almost synchronized clusters.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube