The complete weight enumerator of a subclass of optimal three-weight cyclic codes
Abstract: A class of optimal three-weight cyclic codes of dimension 3 over any finite field was presented by Vega [Finite Fields Appl., 42 (2016) 23-38]. Shortly thereafter, Heng and Yue [IEEE Trans. Inf. Theory, 62(8) (2016) 4501-4513] generalized this result by presenting several classes of cyclic codes with either optimal three weights or a few weights. On the other hand, a class of optimal five-weight cyclic codes of dimension 4 over a prime field was recently presented by Li, et al. [Adv. Math. Commun., 13(1) (2019) 137-156]. One of the purposes of this work is to present a more general description for these optimal five-weight cyclic codes, which gives place to an enlarged class of optimal five-weight cyclic codes of dimension 4 over any finite field. As an application of this enlarged class, we present the complete weight enumerator of a subclass of the optimal three-weight cyclic codes over any finite field that were studied by Vega [Finite Fields Appl., 42 (2016) 23-38]. In addition, we study the dual codes in this enlarged class of optimal five-weight cyclic codes, and show that they are cyclic codes of length $q2-1$, dimension $q2-5$, and minimum Hamming distance 4. In fact, through several examples, we see that those parameters are the best known parameters for linear codes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.