Papers
Topics
Authors
Recent
2000 character limit reached

Well-mixed Lotka-Volterra model with random strongly competitive interactions

Published 10 Nov 2021 in cond-mat.dis-nn, cond-mat.stat-mech, and physics.bio-ph | (2111.05830v2)

Abstract: The random Lotka-Volterra model is widely used to describe the dynamical and thermodynamic features of ecological communities. In this work, we consider random symmetric interactions between species and analyze the strongly competitive interaction case. We investigate different scalings for the distribution of the interactions with the number of species and try to bridge the gap with previous works. Our results show two different behaviors for the mean abundance at zero and finite temperature respectively, with a continuous crossover between the two. We confirm and extend previous results obtained for weak interactions: at zero temperature, even in the strong competitive interaction limit, the system is in a multiple-equilibria phase, whereas at finite temperature only a unique stable equilibrium can exist. Finally, we establish the qualitative phase diagrams in both cases and compare the two species abundance distributions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.