2000 character limit reached
Global and Local Scaling Limits for Linear Eigenvalue Statistics of Jacobi $β$-Ensembles (2111.05661v2)
Published 10 Nov 2021 in math-ph and math.MP
Abstract: We study the moment-generating functions (MGF) for linear eigenvalue statistics of Jacobi unitary, symplectic and orthogonal ensembles. By expressing the MGF as Fredholm determinants of kernels of finite rank, we show that the mean and variance of the suitably scaled linear statistics in these Jacobi ensembles are related to the sine kernel in the bulk of the spectrum, whereas they are related to the Bessel kernel at the (hard) edge of the spectrum. The relation between the Jacobi symplectic/orthogonal ensemble (JSE/JOE) and the Jacobi unitary ensemble (JUE) is also established.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.