Papers
Topics
Authors
Recent
Search
2000 character limit reached

Gaussian Process Meta Few-shot Classifier Learning via Linear Discriminant Laplace Approximation

Published 9 Nov 2021 in cs.LG | (2111.05392v2)

Abstract: The meta learning few-shot classification is an emerging problem in machine learning that received enormous attention recently, where the goal is to learn a model that can quickly adapt to a new task with only a few labeled data. We consider the Bayesian Gaussian process (GP) approach, in which we meta-learn the GP prior, and the adaptation to a new task is carried out by the GP predictive model from the posterior inference. We adopt the Laplace posterior approximation, but to circumvent the iterative gradient steps for finding the MAP solution, we introduce a novel linear discriminant analysis (LDA) plugin as a surrogate for the MAP solution. In essence, the MAP solution is approximated by the LDA estimate, but to take the GP prior into account, we adopt the prior-norm adjustment to estimate LDA's shared variance parameters, which ensures that the adjusted estimate is consistent with the GP prior. This enables closed-form differentiable GP posteriors and predictive distributions, thus allowing fast meta training. We demonstrate considerable improvement over the previous approaches.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.