Papers
Topics
Authors
Recent
2000 character limit reached

An Application of Quantum Machine Learning on Quantum Correlated Systems: Quantum Convolutional Neural Network as a Classifier for Many-Body Wavefunctions from the Quantum Variational Eigensolver

Published 9 Nov 2021 in cond-mat.str-el, cond-mat.dis-nn, cond-mat.stat-mech, and quant-ph | (2111.05076v1)

Abstract: Machine learning has been applied on a wide variety of models, from classical statistical mechanics to quantum strongly correlated systems for the identification of phase transitions. The recently proposed quantum convolutional neural network (QCNN) provides a new framework for using quantum circuits instead of classical neural networks as the backbone of classification methods. We present here the results from training the QCNN by the wavefunctions of the variational quantum eigensolver for the one-dimensional transverse field Ising model (TFIM). We demonstrate that the QCNN identifies wavefunctions which correspond to the paramagnetic phase and the ferromagnetic phase of the TFIM with good accuracy. The QCNN can be trained to predict the corresponding phase of wavefunctions around the putative quantum critical point, even though it is trained by wavefunctions far away from it. This provides a basis for exploiting the QCNN to identify the quantum critical point.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.