Reinforcement Learning for Mixed Autonomy Intersections (2111.04686v1)
Abstract: We propose a model-free reinforcement learning method for controlling mixed autonomy traffic in simulated traffic networks with through-traffic-only two-way and four-way intersections. Our method utilizes multi-agent policy decomposition which allows decentralized control based on local observations for an arbitrary number of controlled vehicles. We demonstrate that, even without reward shaping, reinforcement learning learns to coordinate the vehicles to exhibit traffic signal-like behaviors, achieving near-optimal throughput with 33-50% controlled vehicles. With the help of multi-task learning and transfer learning, we show that this behavior generalizes across inflow rates and size of the traffic network. Our code, models, and videos of results are available at https://github.com/ZhongxiaYan/mixed_autonomy_intersections.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.