Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Noise-Assisted Variational Quantum Thermalization (2111.03935v1)

Published 6 Nov 2021 in quant-ph and physics.comp-ph

Abstract: Preparing thermal states on a quantum computer can have a variety of applications, from simulating many-body quantum systems to training machine learning models. Variational circuits have been proposed for this task on near-term quantum computers, but several challenges remain, such as finding a scalable cost-function, avoiding the need of purification, and mitigating noise effects. We propose a new algorithm for thermal state preparation that tackles those three challenges by exploiting the noise of quantum circuits. We consider a variational architecture containing a depolarizing channel after each unitary layer, with the ability to directly control the level of noise. We derive a closed-form approximation for the free-energy of such circuit and use it as a cost function for our variational algorithm. By evaluating our method on a variety of Hamiltonians and system sizes, we find several systems for which the thermal state can be approximated with a high fidelity. However, we also show that the ability for our algorithm to learn the thermal state strongly depends on the temperature: while a high fidelity can be obtained for high and low temperatures, we identify a specific range for which the problem becomes more challenging. We hope that this first study on noise-assisted thermal state preparation will inspire future research on exploiting noise in variational algorithms.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.