Papers
Topics
Authors
Recent
2000 character limit reached

Persistence of the Brauer-Manin obstruction on cubic surfaces (2111.03546v2)

Published 5 Nov 2021 in math.NT and math.AG

Abstract: Let $X$ be a cubic surface over a global field $k$. We prove that a Brauer-Manin obstruction to the existence of $k$-points on $X$ will persist over every extension $L/k$ with degree relatively prime to $3$. In other words, a cubic surface has nonempty Brauer set over $k$ if and only if it has nonempty Brauer set over some extension $L/k$ with $3\nmid[L:k]$. Therefore, the conjecture of Colliot-Th\'el`ene and Sansuc on the sufficiency of the Brauer-Manin obstruction for cubic surfaces implies that $X$ has a $k$-rational point if and only if $X$ has a $0$-cycle of degree $1$. This latter statement is a special case of a conjecture of Cassels and Swinnerton-Dyer.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.