Papers
Topics
Authors
Recent
2000 character limit reached

Removability of product sets for Sobolev functions in the plane (2111.03381v1)

Published 5 Nov 2021 in math.FA

Abstract: We study conditions on closed sets $C,F \subset \mathbb{R}$ making the product $C \times F$ removable or non-removable for $W{1,p}$. The main results show that the Hausdorff-dimension of the smaller dimensional component $C$ determines a critical exponent above which the product is removable for some positive measure sets $F$, but below which the product is not removable for another collection of positive measure totally disconnected sets $F$. Moreover, if the set $C$ is Ahlfors-regular, the above removability holds for any totally disconnected $F$.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.