2000 character limit reached
Representation Edit Distance as a Measure of Novelty (2111.02770v1)
Published 4 Nov 2021 in cs.LG
Abstract: Adaptation to novelty is viewed as learning to change and augment existing skills to confront unfamiliar situations. In this paper, we propose that the amount of editing of an effective representation (the Representation Edit Distance or RED) used in a set of skill programs in an agent's mental model is a measure of difficulty for adaptation to novelty. The RED is an intuitive approximation to the change in information content in bit strings measured by comparing pre-novelty and post-novelty skill programs. We also present some notional examples of how to use RED for predicting difficulty.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.