Bigraded Betti numbers and Generalized Persistence Diagrams (2111.02551v4)
Abstract: Commutative diagrams of vector spaces and linear maps over $\mathbb{Z}2$ are objects of interest in topological data analysis (TDA) where this type of diagrams are called 2-parameter persistence modules. Given that quiver representation theory tells us that such diagrams are of wild type, studying informative invariants of a 2-parameter persistence module $M$ is of central importance in TDA. One of such invariants is the generalized rank invariant, recently introduced by Kim and M\'emoli. Via the M\"obius inversion of the generalized rank invariant of $M$, we obtain a collection of connected subsets $I\subset\mathbb{Z}2$ with signed multiplicities. This collection generalizes the well known notion of persistence barcode of a persistence module over $\mathbb{R}$ from TDA. In this paper we show that the bigraded Betti numbers of $M$, a classical algebraic invariant of $M$, are obtained by counting the corner points of these subsets $I$s. Along the way, we verify that an invariant of 2-parameter persistence modules called the interval decomposable approximation (introduced by Asashiba et al.) also encodes the bigraded Betti numbers in a similar fashion. We also show that the aforementioned results are optimal in the sense that they cannot be extended to $d$-parameter persistence modules for $d \geq 3$.
- On interval decomposability of 2d persistence modules. Computational Geometry, 105-106:101879, 2022.
- On approximation of 2222 d persistence modules by interval-decomposables. arXiv preprint arXiv:1911.01637, 2019.
- G. Azumaya et al. Corrections and supplementaries to my paper concerning Krull-Remak-Schmidt’s theorem. Nagoya Math. J., 1:117–124, 1950.
- Cotorsion torsion triples and the representation theory of filtered hierarchical clustering. Advances in Mathematics, 369:107171, 2020.
- On the applications of Möbius inversion in combinatorial analysis. The American Mathematical Monthly, 82(8):789–803, 1975.
- Homological approximations in persistence theory. arXiv preprint arXiv:2112.07632, 2021.
- M. Botnan and W. Crawley-Boevey. Decomposition of persistence modules. Proceedings of the American Mathematical Society, 148(11):4581–4596, 2020.
- M. Botnan and M. Lesnick. Algebraic stability of zigzag persistence modules. Algebr. Geom. Topol., 18(6):3133–3204, 2018.
- On Rectangle-Decomposable 2-Parameter Persistence Modules. In 36th International Symposium on Computational Geometry (SoCG 2020), volume 164 of Leibniz International Proceedings in Informatics (LIPIcs), pages 22:1–22:16, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
- Signed barcodes for multi-parameter persistence via rank decompositions and rank-exact resolutions. arXiv preprint arXiv:2107.06800, 2021.
- Elder-rule-staircodes for augmented metric spaces. SIAM Journal on Applied Algebra and Geometry, 5(3):417–454, 2021.
- G. Carlsson. Topology and data. Bulletin of the American Mathematical Society, 46(2):255–308, 2009.
- G. Carlsson and V. De Silva. Zigzag persistence. Foundations of computational mathematics, 10(4):367–405, 2010.
- Zigzag persistent homology and real-valued functions. In Proceedings of the twenty-fifth annual symposium on Computational geometry, pages 247–256, 2009.
- G. Carlsson and F. Mémoli. Multiparameter hierarchical clustering methods. In Classification as a Tool for Research, pages 63–70. Springer, Heidelberg, 2010.
- G. Carlsson and A. Zomorodian. The theory of multidimensional persistence. Discrete & Computational Geometry, 42(1):71–93, 2009.
- Persistence barcodes for shapes. International Journal of Shape Modeling, 11(02):149–187, 2005.
- Combinatorial presentation of multidimensional persistent homology. Journal of Pure and Applied Algebra, 221(5):1055–1075, 2017.
- E. Chambers and D. Letscher. Persistent homology over directed acyclic graphs. In Research in Computational Topology, pages 11–32. Springer, Switzerland, 2018.
- J. Cochoy and S. Oudot. Decomposition of exact pfd persistence bimodules. Discrete & Computational Geometry, 63(2):255–293, 2020.
- Stability of persistence diagrams. Discrete & computational geometry, 37(1):103–120, 2007.
- W. Crawley-Boevey. Decomposition of pointwise finite-dimensional persistence modules. Journal of Algebra and its Applications, 14(05):1550066, 2015.
- H. Derksen and J. Weyman. Quiver representations. Notices of the AMS, 52(2):200–206, 2005.
- Computing Generalized Rank Invariant for 2-Parameter Persistence Modules via Zigzag Persistence and Its Applications. In 38th International Symposium on Computational Geometry (SoCG 2022), volume 224 of Leibniz International Proceedings in Informatics (LIPIcs), pages 34:1–34:17, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
- T. K. Dey and C. Xin. Computing Bottleneck Distance for 2-D Interval Decomposable Modules. In 34th International Symposium on Computational Geometry (SoCG 2018), volume 99 of Leibniz International Proceedings in Informatics (LIPIcs), pages 32:1–32:15. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.
- T. K. Dey and C. Xin. Rectangular approximation and stability of 2222-parameter persistence modules. arXiv preprint arXiv:2108.07429, 2021.
- T. K. Dey and C. Xin. Generalized persistence algorithm for decomposing multiparameter persistence modules. Journal of Applied and Computational Topology, pages 1–52, 2022.
- H. Edelsbrunner and J. Harer. Computational topology: an introduction. American Mathematical Soc., 2010.
- Topological persistence and simplification. In Proceedings 41st annual symposium on foundations of computer science, pages 454–463. IEEE, 2000.
- D. Eisenbud. The Geometry of Syzygies: A Second Course in Algebraic Geometry and Commutative Algebra. Springer, New York, 2002.
- E. G. Escolar and Y. Hiraoka. Persistence modules on commutative ladders of finite type. Discrete & Computational Geometry, 55(1):100–157, 2016.
- P. Gabriel. Unzerlegbare darstellungen i. Manuscripta Mathematica, pages 71–103, 1972.
- Stratifying multiparameter persistent homology. SIAM Journal on Applied Algebra and Geometry, 3(3):439–471, 2019.
- D. Hilbert. Üuber die theorie von algebraischen formen. Mathematische Annalen, pages 473–534, 1890.
- Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences, 113(26):7035–7040, 2016.
- Persistent homology for virtual screening. ChemRxiv.6969260.v3, 2018.
- M. Kerber and A. Rolle. Fast minimal presentations of bi-graded persistence modules. In 2021 Proceedings of the Workshop on Algorithm Engineering and Experiments (ALENEX), pages 207–220. SIAM, 2021.
- W. Kim and F. Mémoli. Generalized persistence diagrams for persistence modules over posets. Journal of Applied and Computational Topology, 5(4):533–581, 2021.
- K. P. Knudson. A refinement of multi-dimensional persistence. Homology Homotopy Appl., 10(1):259–281, 2008.
- C. Landi and P. Frosini. New pseudodistances for the size function space. In Vision Geometry VI, volume 3168, pages 52–60. International Society for Optics and Photonics, 1997.
- M. Lesnick. The theory of the interleaving distance on multidimensional persistence modules. Foundations of Computational Mathematics, 15(3):613–650, 2015.
- M. Lesnick and M. Wright. Interactive visualization of 2-d persistence modules. arXiv preprint arXiv:1512.00180, 2015.
- M. Lesnick and M. Wright. Computing minimal presentations and bigraded betti numbers of 2-parameter persistent homology. SIAM Journal on Applied Algebra and Geometry, 6(2):267–298, 2022.
- S. Mac Lane. Categories for the working mathematician, volume 5. Springer Science & Business Media, New York, 2013.
- A. McCleary and A. Patel. Bottleneck stability for generalized persistence diagrams. Proceedings of the American Mathematical Society, 148(7):3149–3161, 2020.
- A. McCleary and A. Patel. Edit distance and persistence diagrams over lattices. SIAM Journal on Applied Algebra and Geometry, 6(2):134–155, 2022.
- E. Miller. Homological algebra of modules over posets. arXiv preprint arXiv:2008.00063, 2020.
- E. Miller and B. Sturmfels. Combinatorial commutative algebra, volume 227. Springer Science & Business Media, New York, 2005.
- S. Moore. A combinatorial formula for the bigraded betti numbers. arXiv preprint arXiv:2004.02239, 2020.
- S. Moore. On the structure of multiparameter persistence modules. PhD thesis, University of North Carolina at Chapel Hill, 2022.
- A. Patel. Generalized persistence diagrams. Journal of Applied and Computational Topology, 1(3):397–419, 2018.
- G.-C. Rota. On the foundations of combinatorial theory i. theory of möbius functions. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 2(4):340–368, 1964.
- Multidimensional persistence and noise. Foundations of Computational Mathematics, 17(6):1367–1406, 2017.
- A. L. Thomas. Invariants and metrics for multiparameter persistent homology. PhD thesis, Duke University, 2019.
- O. Vipond. Multiparameter persistence landscapes. J. Mach. Learn. Res., 21:61–1, 2020.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.