Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bigraded Betti numbers and Generalized Persistence Diagrams (2111.02551v4)

Published 3 Nov 2021 in math.AT

Abstract: Commutative diagrams of vector spaces and linear maps over $\mathbb{Z}2$ are objects of interest in topological data analysis (TDA) where this type of diagrams are called 2-parameter persistence modules. Given that quiver representation theory tells us that such diagrams are of wild type, studying informative invariants of a 2-parameter persistence module $M$ is of central importance in TDA. One of such invariants is the generalized rank invariant, recently introduced by Kim and M\'emoli. Via the M\"obius inversion of the generalized rank invariant of $M$, we obtain a collection of connected subsets $I\subset\mathbb{Z}2$ with signed multiplicities. This collection generalizes the well known notion of persistence barcode of a persistence module over $\mathbb{R}$ from TDA. In this paper we show that the bigraded Betti numbers of $M$, a classical algebraic invariant of $M$, are obtained by counting the corner points of these subsets $I$s. Along the way, we verify that an invariant of 2-parameter persistence modules called the interval decomposable approximation (introduced by Asashiba et al.) also encodes the bigraded Betti numbers in a similar fashion. We also show that the aforementioned results are optimal in the sense that they cannot be extended to $d$-parameter persistence modules for $d \geq 3$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. On interval decomposability of 2d persistence modules. Computational Geometry, 105-106:101879, 2022.
  2. On approximation of 2222 d persistence modules by interval-decomposables. arXiv preprint arXiv:1911.01637, 2019.
  3. G. Azumaya et al. Corrections and supplementaries to my paper concerning Krull-Remak-Schmidt’s theorem. Nagoya Math. J., 1:117–124, 1950.
  4. Cotorsion torsion triples and the representation theory of filtered hierarchical clustering. Advances in Mathematics, 369:107171, 2020.
  5. On the applications of Möbius inversion in combinatorial analysis. The American Mathematical Monthly, 82(8):789–803, 1975.
  6. Homological approximations in persistence theory. arXiv preprint arXiv:2112.07632, 2021.
  7. M. Botnan and W. Crawley-Boevey. Decomposition of persistence modules. Proceedings of the American Mathematical Society, 148(11):4581–4596, 2020.
  8. M. Botnan and M. Lesnick. Algebraic stability of zigzag persistence modules. Algebr. Geom. Topol., 18(6):3133–3204, 2018.
  9. On Rectangle-Decomposable 2-Parameter Persistence Modules. In 36th International Symposium on Computational Geometry (SoCG 2020), volume 164 of Leibniz International Proceedings in Informatics (LIPIcs), pages 22:1–22:16, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
  10. Signed barcodes for multi-parameter persistence via rank decompositions and rank-exact resolutions. arXiv preprint arXiv:2107.06800, 2021.
  11. Elder-rule-staircodes for augmented metric spaces. SIAM Journal on Applied Algebra and Geometry, 5(3):417–454, 2021.
  12. G. Carlsson. Topology and data. Bulletin of the American Mathematical Society, 46(2):255–308, 2009.
  13. G. Carlsson and V. De Silva. Zigzag persistence. Foundations of computational mathematics, 10(4):367–405, 2010.
  14. Zigzag persistent homology and real-valued functions. In Proceedings of the twenty-fifth annual symposium on Computational geometry, pages 247–256, 2009.
  15. G. Carlsson and F. Mémoli. Multiparameter hierarchical clustering methods. In Classification as a Tool for Research, pages 63–70. Springer, Heidelberg, 2010.
  16. G. Carlsson and A. Zomorodian. The theory of multidimensional persistence. Discrete & Computational Geometry, 42(1):71–93, 2009.
  17. Persistence barcodes for shapes. International Journal of Shape Modeling, 11(02):149–187, 2005.
  18. Combinatorial presentation of multidimensional persistent homology. Journal of Pure and Applied Algebra, 221(5):1055–1075, 2017.
  19. E. Chambers and D. Letscher. Persistent homology over directed acyclic graphs. In Research in Computational Topology, pages 11–32. Springer, Switzerland, 2018.
  20. J. Cochoy and S. Oudot. Decomposition of exact pfd persistence bimodules. Discrete & Computational Geometry, 63(2):255–293, 2020.
  21. Stability of persistence diagrams. Discrete & computational geometry, 37(1):103–120, 2007.
  22. W. Crawley-Boevey. Decomposition of pointwise finite-dimensional persistence modules. Journal of Algebra and its Applications, 14(05):1550066, 2015.
  23. H. Derksen and J. Weyman. Quiver representations. Notices of the AMS, 52(2):200–206, 2005.
  24. Computing Generalized Rank Invariant for 2-Parameter Persistence Modules via Zigzag Persistence and Its Applications. In 38th International Symposium on Computational Geometry (SoCG 2022), volume 224 of Leibniz International Proceedings in Informatics (LIPIcs), pages 34:1–34:17, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
  25. T. K. Dey and C. Xin. Computing Bottleneck Distance for 2-D Interval Decomposable Modules. In 34th International Symposium on Computational Geometry (SoCG 2018), volume 99 of Leibniz International Proceedings in Informatics (LIPIcs), pages 32:1–32:15. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.
  26. T. K. Dey and C. Xin. Rectangular approximation and stability of 2222-parameter persistence modules. arXiv preprint arXiv:2108.07429, 2021.
  27. T. K. Dey and C. Xin. Generalized persistence algorithm for decomposing multiparameter persistence modules. Journal of Applied and Computational Topology, pages 1–52, 2022.
  28. H. Edelsbrunner and J. Harer. Computational topology: an introduction. American Mathematical Soc., 2010.
  29. Topological persistence and simplification. In Proceedings 41st annual symposium on foundations of computer science, pages 454–463. IEEE, 2000.
  30. D. Eisenbud. The Geometry of Syzygies: A Second Course in Algebraic Geometry and Commutative Algebra. Springer, New York, 2002.
  31. E. G. Escolar and Y. Hiraoka. Persistence modules on commutative ladders of finite type. Discrete & Computational Geometry, 55(1):100–157, 2016.
  32. P. Gabriel. Unzerlegbare darstellungen i. Manuscripta Mathematica, pages 71–103, 1972.
  33. Stratifying multiparameter persistent homology. SIAM Journal on Applied Algebra and Geometry, 3(3):439–471, 2019.
  34. D. Hilbert. Üuber die theorie von algebraischen formen. Mathematische Annalen, pages 473–534, 1890.
  35. Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences, 113(26):7035–7040, 2016.
  36. Persistent homology for virtual screening. ChemRxiv.6969260.v3, 2018.
  37. M. Kerber and A. Rolle. Fast minimal presentations of bi-graded persistence modules. In 2021 Proceedings of the Workshop on Algorithm Engineering and Experiments (ALENEX), pages 207–220. SIAM, 2021.
  38. W. Kim and F. Mémoli. Generalized persistence diagrams for persistence modules over posets. Journal of Applied and Computational Topology, 5(4):533–581, 2021.
  39. K. P. Knudson. A refinement of multi-dimensional persistence. Homology Homotopy Appl., 10(1):259–281, 2008.
  40. C. Landi and P. Frosini. New pseudodistances for the size function space. In Vision Geometry VI, volume 3168, pages 52–60. International Society for Optics and Photonics, 1997.
  41. M. Lesnick. The theory of the interleaving distance on multidimensional persistence modules. Foundations of Computational Mathematics, 15(3):613–650, 2015.
  42. M. Lesnick and M. Wright. Interactive visualization of 2-d persistence modules. arXiv preprint arXiv:1512.00180, 2015.
  43. M. Lesnick and M. Wright. Computing minimal presentations and bigraded betti numbers of 2-parameter persistent homology. SIAM Journal on Applied Algebra and Geometry, 6(2):267–298, 2022.
  44. S. Mac Lane. Categories for the working mathematician, volume 5. Springer Science & Business Media, New York, 2013.
  45. A. McCleary and A. Patel. Bottleneck stability for generalized persistence diagrams. Proceedings of the American Mathematical Society, 148(7):3149–3161, 2020.
  46. A. McCleary and A. Patel. Edit distance and persistence diagrams over lattices. SIAM Journal on Applied Algebra and Geometry, 6(2):134–155, 2022.
  47. E. Miller. Homological algebra of modules over posets. arXiv preprint arXiv:2008.00063, 2020.
  48. E. Miller and B. Sturmfels. Combinatorial commutative algebra, volume 227. Springer Science & Business Media, New York, 2005.
  49. S. Moore. A combinatorial formula for the bigraded betti numbers. arXiv preprint arXiv:2004.02239, 2020.
  50. S. Moore. On the structure of multiparameter persistence modules. PhD thesis, University of North Carolina at Chapel Hill, 2022.
  51. A. Patel. Generalized persistence diagrams. Journal of Applied and Computational Topology, 1(3):397–419, 2018.
  52. G.-C. Rota. On the foundations of combinatorial theory i. theory of möbius functions. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 2(4):340–368, 1964.
  53. Multidimensional persistence and noise. Foundations of Computational Mathematics, 17(6):1367–1406, 2017.
  54. A. L. Thomas. Invariants and metrics for multiparameter persistent homology. PhD thesis, Duke University, 2019.
  55. O. Vipond. Multiparameter persistence landscapes. J. Mach. Learn. Res., 21:61–1, 2020.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.