Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing Generalized Rank Invariant for 2-Parameter Persistence Modules via Zigzag Persistence and its Applications (2111.15058v3)

Published 30 Nov 2021 in math.AT and cs.CG

Abstract: The notion of generalized rank invariant in the context of multiparameter persistence has become an important ingredient for defining interesting homological structures such as generalized persistence diagrams. Naturally, computing these rank invariants efficiently is a prelude to computing any of these derived structures efficiently. We show that the generalized rank over a finite interval $I$ of a $\mathbb{Z}2$-indexed persistence module $M$ is equal to the generalized rank of the zigzag module that is induced on a certain path in $I$ tracing mostly its boundary. Hence, we can compute the generalized rank over $I$ by computing the barcode of the zigzag module obtained by restricting the bifiltration inducing $M$ to that path. If the bifiltration and $I$ have at most $t$ simplices and points respectively, this computation takes $O(t\omega)$ time where $\omega\in[2,2.373)$ is the exponent of matrix multiplication. Among others, we apply this result to obtain an improved algorithm for the following problem. Given a bifiltration inducing a module $M$, determine whether $M$ is interval decomposable and, if so, compute all intervals supporting its summands.

Citations (23)

Summary

We haven't generated a summary for this paper yet.