Weighted Quantum Channel Compiling through Proximal Policy Optimization
Abstract: We propose a general and systematic strategy to compile arbitrary quantum channels without using ancillary qubits, based on proximal policy optimization -- a powerful deep reinforcement learning algorithm. We rigorously prove that, in sharp contrast to the case of compiling unitary gates, it is impossible to compile an arbitrary channel to arbitrary precision with any given finite elementary channel set, regardless of the length of the decomposition sequence. However, for a fixed accuracy $\epsilon$ one can construct a universal set with constant number of $\epsilon$-dependent elementary channels, such that an arbitrary quantum channel can be decomposed into a sequence of these elementary channels followed by a unitary gate, with the sequence length bounded by $O(\frac{1}{\epsilon}\log\frac{1}{\epsilon})$. Through a concrete example concerning topological compiling of Majorana fermions, we show that our proposed algorithm can conveniently and effectively reduce the use of expensive elementary gates through adding the weighted cost into the reward function of the proximal policy optimization.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.