Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Visibility Properties of Spiral Sets (2111.01843v2)

Published 2 Nov 2021 in math.NT and math.GT

Abstract: A spiral in $\mathbb{R}{d+1}$ is defined as a set of the form $\left{\sqrt[d+1]{n}\cdot\boldsymbol{u}n\right}{n\ge 1},$ where $\left(\boldsymbol{u}n\right){n\ge 1}$ is a spherical sequence. Such point sets have been extensively studied, in particular in the planar case $d=1$, as they then serve as natural models describing phyllotactic structures (i.e. structures representing configurations of leaves on a plant stem). Recent progress in this theory provides a fine analysis of the distribution of spirals (e.g., their covering and packing radii). Here, various concepts of visiblity from discrete geometry are employed to characterise density properties of such point sets. More precisely, necessary an sufficient conditions are established for a spiral to be (1) an orchard (a "homogeneous" density property defined by P`olya), (2) a uniform orchard (a concept introduced in this work), (3) a set with no visible point (implying that the point set is dense enough in a suitable sense) and (4) a dense forest (a quantitative and uniform refinement of the previous concept).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.