Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Mean-field BDSDEs and associated nonlocal semi-linear backward stochastic partial differential equations (2111.00759v2)

Published 1 Nov 2021 in math.PR

Abstract: In this paper we investigate mean-field backward doubly stochastic differential equations (BDSDEs), i.e., BDSDEs whose driving coefficients also depend on the joint law of the solution process as well as the solution of an associated mean-field forward SDE. Unlike the pioneering paper on BDSDEs by Pardoux-Peng (1994), we handle a driving coefficient in the backward integral of the BDSDE for which the Lipschitz assumption w.r.t. the law of the solution is sufficient, without assuming that this Lipschitz constant is small enough. On the other hand, as the parameters $(x,P_\xi)$ and $(x,P_\xi,y)$ run an infinite-dimensional space, unlike Pardoux and Peng, we cannot apply Kolmogorov's continuity criterion to the value function $V(t,x,P_{\xi}):=Y_t{t,x,P_{\xi}}$, while in the classical case studied in Pardoux-Peng the value function $V(t,x)=Y_t{t,x}$ can be shown to be of class $C{1,2}([0,T]\times\mathbb{R}d)$, we have for our value function $V(t,x,P_{\xi})$ and its derivative $\partial_\mu V(t,x,P_{\xi},y)$ only the $L2$-differentiability with respect to $x$ and $y$, respectively. Using a new method we prove the characterization of $V=(V(t,x,P_{\xi}))$ as the unique solution of the associated mean-field backward stochastic PDE.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.