Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Geometry-Aware Hierarchical Bayesian Learning on Manifolds (2111.00184v1)

Published 30 Oct 2021 in cs.CV

Abstract: Bayesian learning with Gaussian processes demonstrates encouraging regression and classification performances in solving computer vision tasks. However, Bayesian methods on 3D manifold-valued vision data, such as meshes and point clouds, are seldom studied. One of the primary challenges is how to effectively and efficiently aggregate geometric features from the irregular inputs. In this paper, we propose a hierarchical Bayesian learning model to address this challenge. We initially introduce a kernel with the properties of geometry-awareness and intra-kernel convolution. This enables geometrically reasonable inferences on manifolds without using any specific hand-crafted feature descriptors. Then, we use a Gaussian process regression to organize the inputs and finally implement a hierarchical Bayesian network for the feature aggregation. Furthermore, we incorporate the feature learning of neural networks with the feature aggregation of Bayesian models to investigate the feasibility of jointly learning on manifolds. Experimental results not only show that our method outperforms existing Bayesian methods on manifolds but also demonstrate the prospect of coupling neural networks with Bayesian networks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.