Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A General Framework for Inverse Problem Solving using Self-Supervised Deep Learning: Validations in Ultrasound and Photoacoustic Image Reconstruction (2110.14970v1)

Published 28 Oct 2021 in physics.med-ph

Abstract: The image reconstruction process in medical imaging can be treated as solving an inverse problem. The inverse problem is usually solved using time-consuming iterative algorithms with sparsity or other constraints. Recently, deep neural network (DNN)-based methods have been developed to accelerate the inverse-problem-solving process. However, these methods typically adopt supervised learning scheme, which requires ground truths, or labels of the solutions, for training. In many applications, it would be challenging or even impossible to obtain the ground truth, such as the tissue reflectivity function in ultrasound beamforming. In this study, a general framework based on self-supervised learning (SSL) scheme is proposed to train a DNN to solve the inverse problems. In this way, the measurements can be used as both the inputs and the labels during the training of DNN. The proposed SSL method is applied to four typical linear inverse problems for validation, i.e., plane wave ultrasound and photoacoustic image reconstructions, compressed sensing-based synthetic transmit aperture dataset recovery and deconvolution in ultrasound localization microscopy. Results show that, using the proposed framework, the trained DNN can achieve improved reconstruction accuracy with reduced computational time, compared with conventional methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.