Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 146 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Active clustering for labeling training data (2110.14521v1)

Published 27 Oct 2021 in cs.DS, cs.AI, cs.DM, and math.CO

Abstract: Gathering training data is a key step of any supervised learning task, and it is both critical and expensive. Critical, because the quantity and quality of the training data has a high impact on the performance of the learned function. Expensive, because most practical cases rely on humans-in-the-loop to label the data. The process of determining the correct labels is much more expensive than comparing two items to see whether they belong to the same class. Thus motivated, we propose a setting for training data gathering where the human experts perform the comparatively cheap task of answering pairwise queries, and the computer groups the items into classes (which can be labeled cheaply at the very end of the process). Given the items, we consider two random models for the classes: one where the set partition they form is drawn uniformly, the other one where each item chooses its class independently following a fixed distribution. In the first model, we characterize the algorithms that minimize the average number of queries required to cluster the items and analyze their complexity. In the second model, we analyze a specific algorithm family, propose as a conjecture that they reach the minimum average number of queries and compare their performance to a random approach. We also propose solutions to handle errors or inconsistencies in the experts' answers.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube