Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Arbitrary Distribution Modeling with Censorship in Real-Time Bidding Advertising (2110.13587v1)

Published 26 Oct 2021 in cs.LG

Abstract: The purpose of Inventory Pricing is to bid the right prices to online ad opportunities, which is crucial for a Demand-Side Platform (DSP) to win advertising auctions in Real-Time Bidding (RTB). In the planning stage, advertisers need the forecast of probabilistic models to make bidding decisions. However, most of the previous works made strong assumptions on the distribution form of the winning price, which reduced their accuracy and weakened their ability to make generalizations. Though some works recently tried to fit the distribution directly, their complex structure lacked efficiency on online inference. In this paper, we devise a novel loss function, Neighborhood Likelihood Loss (NLL), collaborating with a proposed framework, Arbitrary Distribution Modeling (ADM), to predict the winning price distribution under censorship with no pre-assumption required. We conducted experiments on two real-world experimental datasets and one large-scale, non-simulated production dataset in our system. Experiments showed that ADM outperformed the baselines both on algorithm and business metrics. By replaying historical data of the production environment, this method was shown to lead to good yield in our system. Without any pre-assumed specific distribution form, ADM showed significant advantages in effectiveness and efficiency, demonstrating its great capability in modeling sophisticated price landscapes.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.