Covariance-Generalized Matching Component Analysis for Data Fusion and Transfer Learning (2110.13194v3)
Abstract: In order to encode additional statistical information in data fusion and transfer learning applications, we introduce a generalized covariance constraint for the matching component analysis (MCA) transfer learning technique. We provide a closed-form solution to the resulting covariance-generalized optimization problem and an algorithm for its computation. We call the resulting technique -- applicable to both data fusion and transfer learning -- covariance-generalized MCA (CGMCA). We also demonstrate via numerical experiments that CGMCA is capable of meaningfully encoding into its maps more information than MCA.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.