Reduce the rank calculation of a high-dimensional sparse matrix based on network controllability theory
Abstract: Numerical computing of the rank of a matrix is a fundamental problem in scientific computation. The datasets generated by the internet often correspond to the analysis of high-dimensional sparse matrices. Notwithstanding recent advances in the promotion of traditional singular value decomposition (SVD), an efficient estimation algorithm for the rank of a high-dimensional sparse matrix is still lacking. Inspired by the controllability theory of complex networks, we converted the rank of a matrix into maximum matching computing. Then, we established a fast rank estimation algorithm by using the cavity method, a powerful approximate technique for computing the maximum matching, to estimate the rank of a sparse matrix. In the merit of the natural low complexity of the cavity method, we showed that the rank of a high-dimensional sparse matrix can be estimated in a much faster way than SVD with high accuracy. Our method offers an efficient pathway to quickly estimate the rank of the high-dimensional sparse matrix when the time cost of computing the rank by SVD is unacceptable.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.