Papers
Topics
Authors
Recent
2000 character limit reached

Shift of Pairwise Similarities for Data Clustering (2110.13103v3)

Published 25 Oct 2021 in cs.LG and cs.AI

Abstract: Several clustering methods (e.g., Normalized Cut and Ratio Cut) divide the Min Cut cost function by a cluster dependent factor (e.g., the size or the degree of the clusters), in order to yield a more balanced partitioning. We, instead, investigate adding such regularizations to the original cost function. We first consider the case where the regularization term is the sum of the squared size of the clusters, and then generalize it to adaptive regularization of the pairwise similarities. This leads to shifting (adaptively) the pairwise similarities which might make some of them negative. We then study the connection of this method to Correlation Clustering and then propose an efficient local search optimization algorithm with fast theoretical convergence rate to solve the new clustering problem. In the following, we investigate the shift of pairwise similarities on some common clustering methods, and finally, we demonstrate the superior performance of the method by extensive experiments on different datasets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.