Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sparse varying-coefficient functional linear model

Published 25 Oct 2021 in stat.ME | (2110.12599v1)

Abstract: We consider the problem of variable selection in varying-coefficient functional linear models, where multiple predictors are functions and a response is a scalar and depends on an exogenous variable. The varying-coefficient functional linear model is estimated by the penalized maximum likelihood method with the sparsity-inducing penalty. Tuning parameters that controls the degree of the penalization are determined by a model selection criterion. The proposed method can reveal which combination of functional predictors relates to the response, and furthermore how each predictor relates to the response by investigating coefficient surfaces. Simulation studies are provided to investigate the effectiveness of the proposed method. We also apply it to the analysis of crop yield data to investigate which combination of environmental factors relates to the amount of a crop yield.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.