Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Perturbation theory and linear partial differential equations with delay (2110.12515v2)

Published 24 Oct 2021 in math.FA

Abstract: Functional evolution equations are used in the modeling of numerous physical processes. In this work, our main tool is perturbation theory of strongly continuous semigroups. The advantage of this technique is that one can provide functional evolution equations with the explicit representation formulas of the solution. First, we introduce a closed form of the fundamental solution of the evolution equation with a discrete delay using the delayed Dyson-Phillips series. Then we set up the analytical representation formulas of the classical solutions of linear homogeneous/non-homogeneous evolution equations with a constant delay in a Banach space. In the special case, when a strongly continuous group $\left\lbrace \mathcal{T}(t)\right\rbrace_{t\in \mathbb{R}}$ commutes with a bounded linear operator $A_{1}$, we obtain an elegant formula for the fundamental solution using the powers of the resolvent operator of $A_{0}$. Furthermore, we consider delay evolution equations with permutable/non-permutable linear bounded operators and derive crucial results in terms of non-commutative analysis. Finally, we present an example, in the context of a one-dimensional heat equation with a discrete delay to demonstrate the applicability of our theoretical results and give some comparisons with existing results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.