Papers
Topics
Authors
Recent
Search
2000 character limit reached

A methodology for detection and localization of fruits in apples orchards from aerial images

Published 24 Oct 2021 in cs.CV | (2110.12331v1)

Abstract: Computer vision methods based on convolutional neural networks (CNNs) have presented promising results on image-based fruit detection at ground-level for different crops. However, the integration of the detections found in different images, allowing accurate fruit counting and yield prediction, have received less attention. This work presents a methodology for automated fruit counting employing aerial-images. It includes algorithms based on multiple view geometry to perform fruits tracking, not just avoiding double counting but also locating the fruits in the 3-D space. Preliminary assessments show correlations above 0.8 between fruit counting and true yield for apples. The annotated dataset employed on CNN training is publicly available.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.