Universally consistent estimation of the reach (2110.12208v3)
Abstract: The reach of a set $M \subset \mathbb Rd$, also known as condition number when $M$ is a manifold, was introduced by Federer in 1959. The reach is a central concept in geometric measure theory, set estimation, manifold learning, among others areas. We introduce a universally consistent estimate of the reach, just assuming that the reach is positive. Under an additional assumption we provide rates of convergence. We also show that it is not possible to determine, based on a finite sample, if the reach of the support of a density is zero or not. We provide a small simulation study and a bias correction method for the case when $M$ is a manifold.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.