Papers
Topics
Authors
Recent
Search
2000 character limit reached

Central limit theorem for linear spectral statistics of block-Wigner-type matrices

Published 23 Oct 2021 in math.PR | (2110.12171v1)

Abstract: Motivated by the stochastic block model, we investigate a class of Wigner-type matrices with certain block structures, and establish a CLT for the corresponding linear spectral statistics via the large-deviation bounds from local law and the cumulant expansion formula. We apply the results to the stochastic block model. Specifically, a class of renormalized adjacency matrices will be block-Wigner-type matrices. Further, we show that for certain estimator of such renormalized adjacency matrices, which will be no longer Wigner-type but share long-range non-decaying weak correlations among the entries, the linear spectral statistics of such estimators will still share the same limiting behavior as those of the block-Wigner-type matrices, thus enabling hypothesis testing about stochastic block model.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.