Papers
Topics
Authors
Recent
2000 character limit reached

Predictive machine learning for prescriptive applications: a coupled training-validating approach

Published 22 Oct 2021 in cs.LG and math.OC | (2110.11826v1)

Abstract: In this research we propose a new method for training predictive machine learning models for prescriptive applications. This approach, which we refer to as coupled validation, is based on tweaking the validation step in the standard training-validating-testing scheme. Specifically, the coupled method considers the prescription loss as the objective for hyper-parameter calibration. This method allows for intelligent introduction of bias in the prediction stage to improve decision making at the prescriptive stage, and is generally applicable to most machine learning methods, including recently proposed hybrid prediction-stochastic-optimization techniques, and can be easily implemented without model-specific mathematical modeling. Several experiments with synthetic and real data demonstrate promising results in reducing the prescription costs in both deterministic and stochastic models.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.