Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Theoretical and Computational Analysis of Full Strong-Branching (2110.10754v2)

Published 20 Oct 2021 in math.OC

Abstract: Full strong-branching is a well-known variable selection rule that is known experimentally to produce significantly smaller branch-and-bound trees in comparison to all other known variable selection rules. In this paper, we attempt an analysis of the performance of the strong-branching rule both from a theoretical and a computational perspective. On the positive side for strong-branching we identify vertex cover as a class of instances where this rule provably works well. In particular, for vertex cover we present an upper bound on the size of the branch-and-bound tree using strong-branching as a function of the additive integrality gap, show how the Nemhauser-Trotter property of persistency which can be used as a pre-solve technique for vertex cover is being recursively and consistently used throughout the strong-branching based branch-and-bound tree, and finally provide an example of a vertex cover instance where not using strong-branching leads to a tree that has at least exponentially more nodes than the branch-and-bound tree based on strong-branching. On the negative side for strong-branching, we identify another class of instances where strong-branching based branch-and-bound tree has exponentially larger tree in comparison to another branch-and-bound tree for solving these instances. On the computational side, we conduct experiments on various types of instances to understand how much larger is the size of the strong-branching based branch-and-bound tree in comparison to the optimal branch-and-bound tree. The main take-away from these experiments is that for all these instances, the size of the strong-branching based branch-and-bound tree is within a factor of two of the size of the optimal branch-and-bound tree.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.