Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward Understanding Convolutional Neural Networks from Volterra Convolution Perspective (2110.09902v3)

Published 19 Oct 2021 in cs.LG

Abstract: We make an attempt to understanding convolutional neural network by exploring the relationship between (deep) convolutional neural networks and Volterra convolutions. We propose a novel approach to explain and study the overall characteristics of neural networks without being disturbed by the horribly complex architectures. Specifically, we attempt to convert the basic structures of a convolutional neural network (CNN) and their combinations to the form of Volterra convolutions. The results show that most of convolutional neural networks can be approximated in the form of Volterra convolution, where the approximated proxy kernels preserve the characteristics of the original network. Analyzing these proxy kernels may give valuable insight about the original network. Base on this setup, we presented methods to approximating the order-zero and order-one proxy kernels, and verified the correctness and effectiveness of our results.

Citations (1)

Summary

We haven't generated a summary for this paper yet.