Papers
Topics
Authors
Recent
2000 character limit reached

Unsupervised Image Fusion Using Deep Image Priors (2110.09490v3)

Published 18 Oct 2021 in cs.CV

Abstract: A significant number of researchers have applied deep learning methods to image fusion. However, most works require a large amount of training data or depend on pre-trained models or frameworks to capture features from source images. This is inevitably hampered by a shortage of training data or a mismatch between the framework and the actual problem. Deep Image Prior (DIP) has been introduced to exploit convolutional neural networks' ability to synthesize the 'prior' in the input image. However, the original design of DIP is hard to be generalized to multi-image processing problems, particularly for image fusion. Therefore, we propose a new image fusion technique that extends DIP to fusion tasks formulated as inverse problems. Additionally, we apply a multi-channel approach to enhance DIP's effect further. The evaluation is conducted with several commonly used image fusion assessment metrics. The results are compared with state-of-the-art image fusion methods. Our method outperforms these techniques for a range of metrics. In particular, it is shown to provide the best objective results for most metrics when applied to medical images.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.