Papers
Topics
Authors
Recent
Search
2000 character limit reached

Accountability in AI: From Principles to Industry-specific Accreditation

Published 8 Oct 2021 in cs.CY and cs.AI | (2110.09232v1)

Abstract: Recent AI-related scandals have shed a spotlight on accountability in AI, with increasing public interest and concern. This paper draws on literature from public policy and governance to make two contributions. First, we propose an AI accountability ecosystem as a useful lens on the system, with different stakeholders requiring and contributing to specific accountability mechanisms. We argue that the present ecosystem is unbalanced, with a need for improved transparency via AI explainability and adequate documentation and process formalisation to support internal audit, leading up eventually to external accreditation processes. Second, we use a case study in the gambling sector to illustrate in a subset of the overall ecosystem the need for industry-specific accountability principles and processes. We define and evaluate critically the implementation of key accountability principles in the gambling industry, namely addressing algorithmic bias and model explainability, before concluding and discussing directions for future work based on our findings. Keywords: Accountability, Explainable AI, Algorithmic Bias, Regulation.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.