Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Function-space Inference with Sparse Implicit Processes (2110.07618v3)

Published 14 Oct 2021 in stat.ML and cs.LG

Abstract: Implicit Processes (IPs) represent a flexible framework that can be used to describe a wide variety of models, from Bayesian neural networks, neural samplers and data generators to many others. IPs also allow for approximate inference in function-space. This change of formulation solves intrinsic degenerate problems of parameter-space approximate inference concerning the high number of parameters and their strong dependencies in large models. For this, previous works in the literature have attempted to employ IPs both to set up the prior and to approximate the resulting posterior. However, this has proven to be a challenging task. Existing methods that can tune the prior IP result in a Gaussian predictive distribution, which fails to capture important data patterns. By contrast, methods producing flexible predictive distributions by using another IP to approximate the posterior process cannot tune the prior IP to the observed data. We propose here the first method that can accomplish both goals. For this, we rely on an inducing-point representation of the prior IP, as often done in the context of sparse Gaussian processes. The result is a scalable method for approximate inference with IPs that can tune the prior IP parameters to the data, and that provides accurate non-Gaussian predictive distributions.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.