Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

The Time Domain Linear Sampling Method for determining the shape of multiple scatterers using electromagnetic waves (2110.07398v2)

Published 14 Oct 2021 in math.NA, cs.NA, and physics.comp-ph

Abstract: The time domain linear sampling method (TD-LSM) solves inverse scattering problems using time domain data by creating an indicator function for the support of the unknown scatterer. It involves only solving a linear integral equation called the near-field equation using different data from sampling points that probe the domain where the scatterer is located. To date, the method has been used for the acoustic wave equation and has been tested for several different types of scatterers, i.e. sound hard, impedance, and penetrable, and for waveguides. In this paper, we extend the TD-LSM to the time dependent Maxwell's system with impedance boundary conditions - a similar analysis handles the case of a perfect electric conductor (PEC). We provide an analysis that supports the use of the TD-LSM for this problem, and preliminary numerical tests of the algorithm. Our analysis relies on the Laplace transform approach previously used for the acoustic wave equation. This is the first application of the TD-LSM in electromagnetism.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube