On Kitaoka's conjecture and lifting problem for universal quadratic forms (2110.06260v2)
Abstract: For a totally positive definite quadratic form over the ring of integers of a totally real number field $K$, we show that there are only finitely many totally real field extensions of $K$ of a fixed degree over which the form is universal (namely, those that have a short basis in a suitable sense). Along the way we give a general construction of a universal form of rank bounded by $D(\log D){d-1}$, where $d$ is the degree of $K$ over $\mathbb Q$ and $D$ is its discriminant. Furthermore, for any fixed degree we prove (weak) Kitaoka's conjecture that there are only finitely many totally real number fields with a universal ternary quadratic form.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.