Papers
Topics
Authors
Recent
Search
2000 character limit reached

Review of Kernel Learning for Intra-Hour Solar Forecasting with Infrared Sky Images and Cloud Dynamic Feature Extraction

Published 11 Oct 2021 in cs.LG and eess.IV | (2110.05622v1)

Abstract: The uncertainty of the energy generated by photovoltaic systems incurs an additional cost for a guaranteed, reliable supply of energy (i.e., energy storage). This investigation aims to decrease the additional cost by introducing probabilistic multi-task intra-hour solar forecasting (feasible in real time applications) to increase the penetration of photovoltaic systems in power grids. The direction of moving clouds is estimated in consecutive sequences of sky images by extracting features of cloud dynamics with the objective of forecasting the global solar irradiance that reaches photovoltaic systems. The sky images are acquired using a low-cost infrared sky imager mounted on a solar tracker. The solar forecasting algorithm is based on kernel learning methods, and uses the clear sky index as predictor and features extracted from clouds as feature vectors. The proposed solar forecasting algorithm achieved 16.45\% forecasting skill 8 minutes ahead with a resolution of 15 seconds. In contrast, previous work reached 15.4\% forecasting skill with the resolution of 1 minute. Therefore, this solar forecasting algorithm increases the performances with respect to the state-of-the-art, providing grid operators with the capability of managing the inherent uncertainties of power grids with a high penetration of photovoltaic systems.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.