Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Automatic Recall of Software Lessons Learned for Software Project Managers (2110.05261v1)

Published 11 Oct 2021 in cs.SE and cs.IR

Abstract: Lessons learned (LL) records constitute the software organization memory of successes and failures. LL are recorded within the organization repository for future reference to optimize planning, gain experience, and elevate market competitiveness. However, manually searching this repository is a daunting task, so it is often disregarded. This can lead to the repetition of previous mistakes or even missing potential opportunities. This, in turn, can negatively affect the profitability and competitiveness of organizations. We aim to present a novel solution that provides an automatic process to recall relevant LL and to push those LL to project managers. This will dramatically save the time and effort of manually searching the unstructured LL repositories and thus encourage the LL exploitation. We exploit existing project artifacts to build the LL search queries on-the-fly in order to bypass the tedious manual searching. An empirical case study is conducted to build the automatic LL recall solution and evaluate its effectiveness. The study employs three of the most popular information retrieval models to construct the solution. Furthermore, a real-world dataset of 212 LL records from 30 different software projects is used for validation. Top-k and MAP well-known accuracy metrics are used as well. Our case study results confirm the effectiveness of the automatic LL recall solution. Also, the results prove the success of using existing project artifacts to dynamically build the search query string. This is supported by a discerning accuracy of about 70% achieved in the case of top-k. The automatic LL recall solution is valid with high accuracy. It will eliminate the effort needed to manually search the LL repository. Therefore, this will positively encourage project managers to reuse the available LL knowledge, which will avoid old pitfalls and unleash hidden business opportunities.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.